Abstract

Abstract Model-based control improves robot performance provided that the dynamics parameters are estimated accurately. However, some of the model parameters change with time, e.g. friction parameters and unknown payload. Particularly, off-line identification approaches omit the payload estimation (due to practical reasons). Adaptive control copes with some of these structural uncertainties. Thus, this work implements an adaptive control scheme for a 3-DOF parallel manipulator. The controller relies on a novel relevant-parameter dynamic model that permits to study the cases in where the uncertainties affect: (1) rigid body parameters, (2) friction parameters, (3) actuator dynamics, and (4) a combination of the former cases. The simulations and experiments verify the performance of the proposed controller. The control scheme is implemented on the modular programming environment Open Robot Control Software (OROCOS). Finally, an experimental setup evaluates the controller performance when the robot handles a payload.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call