Abstract

Challenges for controlled flight of a robotic insect are due to the inherent instability of the system, complex fluid-structure interactions, and the general lack of a complete system model. In this paper, we propose theoretical models of the system based on the limited information available from previous work and a comprehensive adaptive flight controller that is capable of coping with uncertainties in the system. We have demonstrated that the proposed methods enable the robot to achieve sustained hovering flights with relatively small errors compared to a similar but non-adaptive approach. Furthermore, vertical takeoff and landing flights are also shown to illustrate the fidelity of the flight controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call