Abstract

Abstract This paper presents a new bounded force feedback control law to improve transparency in nonlinear bilateral teleoperation systems in the presence of three problems in practical applications of teleoperation systems such as input saturation, asymmetric time varying communication delays with no restriction on their rates of variation and parametric uncertainties, simultaneously. The proposed controller is a nonlinear-proportional plus nonlinear damping (nP + nD) controller with the addition of a nonlinear adaptive term and nonlinear function of the environment force on the slave side and nonlinear function of the human force and force error on the master side. Using a novel Lyapunov–Krasovskii functional, the asymptotic stability and position and force tracking performance of the teleoperation system are established under specific conditions on the controller parameters, actuator saturation characteristics and maximum allowable time delay. The validity of the theoretical results is corroborated by the simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call