Abstract
Efficient implementation of the element-free Galerkin (EFG) method for a phase-field model of linear elastic fracture mechanics is presented, in which the convenience of the meshfree method to construct high order approximation functions and to implement h-adaptivity is fully exploited. A second-order moving-least squares approximation for both displacement and phase field is employed. Domain integration of the weak forms is evaluated by the quadratically consistent 3-point integration scheme. The refinement criterion using maximum residual strain energy history is proposed and the insertion of nodes is based on the background mesh. Numerical results show that the developed method is more efficient than the standard finite element method (3-node triangle element) due to the proposed h-adaptivity. In comparison with the standard EFG method, the proposed consistent EFG method significantly improves the computational efficiency and accuracy. The advantage of the quadratic approximation is also demonstrated. In addition, the feasibility of extending the proposed method to 3D is validated by the modeling of a twisting crack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.