Abstract

In this article, we consider the leader-follower consensus control problem of uncertain multiagent systems, aiming to achieve the improvement of system steady state and transient performance. To this end, a new adaptive neural control approach is proposed with a novel design of the Lyapunov function, which is generated with a class of positive functions. Guided by this idea, a series of smooth functions is incorporated into backstepping design and Lyapunov analysis to develop a performance-oriented controller. It is proved that the proposed controller achieves a perfect asymptotic consensus performance and a tunable L2 transient performance of synchronization errors, whereas most existing results can only ensure the stability. Simulation demonstrates the obtained results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call