Abstract

Adaptive confidence balls are constructed for individual resolution levels as well as the entire mean vector in a multiresolution framework. Finite sample lower bounds are given for the minimum expected squared radius for confidence balls with a prespecified confidence level. The confidence balls are centered on adaptive estimators based on special local block thresholding rules. The radius is derived from an analysis of the loss of this adaptive estimator. In addition adaptive honest confidence balls are constructed which have guaranteed coverage probability over all of $\mathbb{R}^N$ and expected squared radius adapting over a maximum range of Besov bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.