Abstract

The present article deals with the efficient use of different types of monitoring information in optimizing condition-based maintenance decision making for a deteriorating system operating under variable environment. The degradation phenomenon of a system is the fatigue crack growth that is modeled by a physics-based stochastic process. The environment process is assumed to be modeled by a time-homogenous Markov chain with finite state space. We suppose that the environmental condition is observed perfectly, while the crack depth can be assessed imperfectly through a non-destructive ultrasonic technique. As such, two kinds of indirect information are available on the system at each inspection time: environmental covariate and diagnostic covariate. Based on this set of information, two condition-based maintenance strategies adaptive to environmental conditions are developed. In the first one, the adaptation scheme is time-based, while in the second, it is condition-based. These maintenance strategies are compared one with another and to a classical non-adaptive one to point out the performances of each adaptation scheme and hence the appreciation of using different information sources in maintenance decision making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.