Abstract

Some researchers have illustrated how individual and groups of bacteria forage for nutrients and to model it as a distributed optimization process, which is called the bacterial foraging optimization (BFOA). One of the major driving forces of BFOA is the chemotactic movement of a virtual bacterium, which models a trial solution of the optimization problem. In this article, we analyze the chemotactic step of a one dimensional BFOA in the light of the classical gradient descent algorithm (GDA). Our analysis points out that chemotaxis employed in BFOA may result in sustained oscillation, especially for a flat fitness landscape, when a bacterium cell is very near to the optima. To accelerate the convergence speed near optima we have made the chemotactic step size C adaptive. Computer simulations over several numerical benchmarks indicate that BFOA with the new chemotactic operation shows better convergence behavior as compared to the classical BFOA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.