Abstract

Compressive Sensing (CS) realizes a low-complex image encoding architecture, which is suitable for resource-constrained wireless sensor networks. However, due to the nonstationary statistics of images, images reconstructed by the CS-based codec have many blocking artifacts and blurs. To overcome these negative effects, we propose an Adaptive Block Compressive Sensing (ABCS) system based on spatial entropy. Spatial entropy measures the amount of information, which is used to allocate measuring resources to various regions. The scheme takes spatial entropy into consideration because rich information means more edges and textures. To reduce the computational complexity of decoding, a linear mode is used to reconstruct each block by the matrix-vector product. Experimental results show that our ABCS coding system provides a better reconstruction quality from both subjective and objective points of view, and it also has a low decoding complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.