Abstract

The development of compressive sensing (CS) technology has inspired data gathering in wireless sensor networks to move from traditional raw data gathering towards compression based gathering using data correlations. While extensive efforts have been made to improve the data gathering efficiency, little has been done for data that is gathered and recovered data with unknown and dynamic sparsity. In this work, we present an adaptive compressive sensing data gathering scheme to capture the dynamic nature of signal sparsity. By only re-sampling a few measurements, the current sparsity as well as the new sampling rate can be accurately determined, thus guaranteeing recovery performance and saving energy. In order to recover a signal with unknown sparsity, we further propose an adaptive step size variation integrated with a sparsity adaptive matching pursuit algorithm to improve the recovery performance and convergence speed. Our simulation results show that the proposed algorithm can capture the variation in the sparsities of the original signal and obtain a much longer network lifetime than traditional raw data gathering algorithms.

Highlights

  • Wireless Sensor Networks (WSNs), which are capable of sensing, computing, and wireless communication, can be applied to a wide range of applications, such as scientific observation, emergence detection, climate detection, ecosystem surveillance, and physical hazard prevention [1].In many of these applications, sensor nodes are powered by battery and deployed in an unattended hostile environment with high density

  • We consider a WSN with a fixed sink node and no more than 400 sensor nodes randomly deployed in a square area of size 500 × 500

  • We presented an adaptive sampling data gathering scheme for the periodical monitoring of wireless sensor networks

Read more

Summary

Introduction

Wireless Sensor Networks (WSNs), which are capable of sensing, computing, and wireless communication, can be applied to a wide range of applications, such as scientific observation, emergence detection, climate detection, ecosystem surveillance, and physical hazard prevention [1]. In many of these applications, sensor nodes are powered by battery and deployed in an unattended hostile environment with high density. Once deployed, these nodes should send their sensing results to the sink node periodically. Multihop communication is essential for large-scale WSNs for cases where the transmission range of sensor nodes is much smaller than the size of the target area

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.