Abstract
This paper proposes a variant of the bacterial foraging optimization (BFO) algorithm with time-varying chemotaxis step length and comprehensive learning strategy which we call adaptive comprehensive learning bacterial foraging optimization (ALCBFO). An adaptive non-linearly decreasing modulation model is used to keep a well balance between the exploration and exploitation of the proposed algorithm. The comprehensive learning mechanism maintains the diversity of the bacterial population and thus alleviates the premature convergence. Compared with the classical GA, PSO, the original BFO and two improved BFO (BFO-LDC and BFO-NDC) algorithm, the proposed ACLBFO shows significantly better performance in solving multimodal problems. We also assess the performance of the ACLBFO method on vehicle routing problem with time windows (VRPTW). Compared with three other BFO algorithms, the proposed algorithm is superior and confirms its potential to solve vehicle routing problem with time windows (VRPTW).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.