Abstract

With the development of digital signal processes, the relative differences of PMSM single loop in control periods between the speed loop and current loops are becoming smaller or even vanishing. Therefore, cascade control schemes seem to be unnecessary. In addition, considering the effects of disturbances and the variety of moments of inertia, this paper proposes a scheme using an adaptive non-cascade control method to design the controller, which merges speed loop and q-axis current loop into one single loop. First, an extended state observer (ESO) is employed to estimate the disturbances of the system. The estimated value is used in the feedforward compensation design to improve the capability of system anti-disturbance. Then, considering the performance degradation caused by inertia change, an adaptive control scheme is developed. By using inertia identification technology, the feedforward compensation gain can be tuned automatically according to the identification value. Several groups of simulations and experiments are carried out and the results demonstrate the effectiveness of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.