Abstract

AbstractComponent mode synthesis (CMS) is a classical method for the reduction of large‐scale finite element models in linear elasticity. In this paper we develop a methodology for adaptive refinement of CMS models. The methodology is based on a posteriori error estimates that determine to what degree each CMS subspace influence the error in the reduced solution. We consider a static model problem and prove a posteriori error estimates for the error in a linear goal quantity as well as in the energy and L2 norms. Automatic control of the error in the reduced solution is accomplished through an adaptive algorithm that determines suitable dimensions of each CMS subspace. The results are demonstrated in numerical examples. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.