Abstract

Light sensing by tissues distinct from the eye occurs in diverse animal groups, enabling circadian control and phototactic behaviour. Extraocular photoreceptors may also facilitate rapid colour change in cephalopods and lizards, but little is known about the sensory system that mediates slow colour change in arthropods. We previously reported that slow colour change in twig-mimicking caterpillars of the peppered moth (Biston betularia) is a response to achromatic and chromatic visual cues. Here we show that the perception of these cues, and the resulting phenotypic responses, does not require ocular vision. Caterpillars with completely obscured ocelli remained capable of enhancing their crypsis by changing colour and choosing to rest on colour-matching twigs. A suite of visual genes, expressed across the larval integument, likely plays a key role in the mechanism. To our knowledge, this is the first evidence that extraocular colour sensing can mediate pigment-based colour change and behaviour in an arthropod.

Highlights

  • Background choiceTo further evaluate the capacity of B. betularia caterpillars for extraocular colour perception, we tested background choice behaviour using two designs of background choice arena: a transparent plastic cube containing two diagonally crossing dowels, each painted with a single colour; and a transparent horizontal tube with a single horizontally suspended dowel, one half painted green, and the other brown

  • B. betularia larvae reared in white dowel enclosures were significantly brighter than those reared on black dowels, when measured as the double cone responses of the avian retina (F1,127 = 177.4, P < 0.0001; Fig. 2b), but there was no significant effect of blindfolding on the luminance of larvae from black or white treatments (F1,127 = 0.28, P = 0.6)

  • Biston betularia larvae that were prevented from receiving light input through their ocelli changed colour in response to luminance and colour cues, and maximised the benefits of this plastic masquerade by actively selecting twigs of similar colour

Read more

Summary

Introduction

To further evaluate the capacity of B. betularia caterpillars for extraocular colour perception, we tested background choice behaviour using two designs of background choice arena: a transparent plastic cube containing two diagonally crossing dowels, each painted with a single colour (bright green vs dark brown); and a transparent horizontal tube with a single horizontally suspended dowel, one half painted green, and the other brown (see ‘Methods’). These two designs allowed us to test a b c Reflectance (%) Luminance. We determined the coding sequence (CDS) for visual arrestin-1

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.