Abstract
This paper studies the adaptive cluster synchronization of a generalized linearly coupled network with time-varying delay and distributed delays. This network includes nonidentical nodes displaying different local dynamical behaviors, while for each cluster of that network the internal dynamics is uniform (such as chaotic, periodic, or stable behavior). In particular, the generalized coupling matrix of this network can be asymmetric and weighted. Two different adaptive laws of time-varying coupling strength and a linear feedback control are designed to achieve the cluster synchronization of this network. Some sufficient conditions to ensure the cluster synchronization are obtained by using the invariant principle of functional differential equations and linear matrix inequality (LMI). Numerical simulations verify the efficiency of our proposed adaptive control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.