Abstract
Community structure and leaf traits are important elements of terrestrial ecosystems. Changes of community structure and leaf traits are of particular use in the study of the influence of climate change on terrestrial ecosystems. Patterns of community structure (including species richness, above- and below-ground biomass) and leaf traits (including leaf mass per area (LMA), nitrogen content both on mass and area bases (N mass and N area), and foliar δ13C) from 19 grassland plots along an altitudinal transect at Hongchiba in Chongqing, China, were analyzed. Species richness along the altitudinal transect had a hump-shaped pattern. Above-ground biomass had a quadratic decrease along the altitudinal gradient whereas below-ground biomass had the opposite pattern. Change of above-ground biomass of various taxonomic groups with altitude was also studied. Poaceae showed strong negative relationships and Asteraceae showed a hump-shaped relationship with increase of altitude. Five common species of the grassland, Trifolium pratense, Geranium wilfordii, Aster tataricus, Leontopodium leontopodioides, and Spiraea prunifolia, were particularly studied for variation of leaf traits along the altitudinal gradient. Averaged for all species, LMA, N area and foliar δ13C had positive correlations with altitude. N mass did not change significantly as altitude increased. LMA and N area showed significant positive relationships with foliar δ13C. The adaptive features of leaf traits among different species were not consistent. The study highlights specific adaptation patterns in relation to altitude for different plant species, provides further insights into adaptive trends of community structure and leaf traits in a specific ecological region filling a gap in the definition of global patterns, and adds to the understanding of how adaptive patterns of plants may respond to global climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.