Abstract
AbstractIn this article, a characteristic finite element approximation of quadratic optimal control problems governed by linear convection–diffusion equations is given. We derive some a posteriori error estimates for both the control and the state approximations, where the control variable is constrained by pointwise inequality. The derived error estimators are then used as an error indicator to guide the mesh refinement. In this sense, they are very important in developing adaptive finite element algorithm for the optimal control problems. Finally, a numerical example is given to validate the efficiency and reliability of the theoretical results. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.