Abstract

An effective multi-objective optimization methodology that combines the isogeometric analysis (IGA) and adaptive chaotic particle swarm algorithm is presented for optimizing ceramic volume fraction (CVF) distribution of functionally graded plates (FGPs) under eigenfrequencies. The CVF distribution is represented by the B-spline basis function. Mechanical behaviors of FGPs are obtained with NURBS-based IGA and the recently developed simple first-order shear theory. The design variables are the CVFs at control points in the thickness direction, and the optimization objective is to minimize the mass of structure and maximize the first natural frequency. A recently developed multi-objective adaptive chaotic particle swarm algorithm with high efficiency is employed as an optimizer. All desirable features of the developed approach will be illustrated through four numerical examples, confirming its effectiveness and reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.