Abstract

Artificial rearing of neonatal rats on a high-carbohydrate (HC) milk formula resulted in the immediate onset of hyperinsulinemia. This study examines, in islets of 12-day-old HC rats, adaptive changes that support the hyperinsulinemic state. Increases in plasma glucagon-like peptide-1 (GLP-1) levels and islet GLP-1 receptor mRNA supported increased insulin secretion by HC islets. Isolated HC islets, but not mother-fed (MF) islets, secreted moderate amounts of insulin in a glucose- and Ca(2+)-independent manner. Under stringent Ca(2+)-free conditions and in the presence of glucose, GLP-1 plus acetylcholine augmented insulin release to a larger extent in HC islets. Levels of adenylyl cyclase type VI mRNA and activities of protein kinase A, protein kinase C, and calcium calmodulin kinase II were increased in HC islets. A tenfold increase in norepinephrine concentration was required to inhibit insulin secretion in HC islets compared with MF islets, indicating reduced sensitivity to adrenergic signals. This study shows that significant alterations at proximal and distal sites of the insulin secretory pathway in HC islets may support the hyperinsulinemic state of these rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call