Abstract

Class-specific cost regulation extreme learning machine (CCR-ELM) can effectively deal with the class imbalance problems. However, its key parameters, including the number of hidden nodes, the input weights, the biases and the tradeoff factors are normally generated randomly or preset by human. Moreover, the number of input weights and biases depend on the size of hidden layer. Inappropriate quantity of hidden nodes may lead to the useless or redundant neuron nodes, and make the whole structure complex, even cause the worse generalization and unstable classification performances. Based on this, an adaptive CCR-ELM with variable-length brain storm optimization algorithm is proposed for the class imbalance learning. Each individual consists of all above parameters of CCR-ELM and its length varies with the number of hidden nodes. A novel mergence operator is presented to incorporate two parent individuals with different length and generate a new individual. The experimental results for nine imbalance datasets show that variable-length brain storm optimization algorithm can find better parameters of CCR-ELM, resulting in the better classification accuracy than other evolutionary optimization algorithms, such as GA, PSO, and VPSO. In addition, the classification performance of the proposed adaptive algorithm is relatively stable under varied imbalance ratios. Applying the proposed algorithm in the fault diagnosis of conveyor belt also proves that ACCR-ELM with VLen-BSO has the better classification performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.