Abstract
Therapeutic resistance is a major challenge facing the design of effective cancer treatments. Adaptive cancer therapy is in principle the most viable approach to manage cancer's adaptive dynamics through drug combinations with dose timing and modulation. However, there are numerous open issues facing the clinical success of adaptive therapy. Chief among these issues is the feasibility of real-time predictions of treatment response which represent a bedrock requirement of adaptive therapy. Generative artificial intelligence has the potential to learn prediction models of treatment response from clinical, molecular, and radiomics data about patients and their treatments. The article explores this potential through a proposed integration model of Generative Pre-Trained Transformers (GPTs) in a closed loop with adaptive treatments to predict the trajectories of disease progression. The conceptual model and the challenges facing its realization are discussed in the broader context of artificial intelligence integration in oncology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Cancer control : journal of the Moffitt Cancer Center
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.