Abstract

The pressure and velocity field in a one-dimensional acoustic waveguide can be sensed in a non-intrusive manner using spatially distributed microphones. Experimental characterization with sensor arrangements of this type has many applications in measurement and control. This paper presents a method for measuring the acoustic variables in a duct under fluctuating propagation conditions with specific focus on in-system calibration and tracking of the system parameters of a three-microphone measurement configuration. The tractability of the non-linear optimization problem that results from taking a parametric approach is investigated alongside the influence of extraneous measurement noise on the parameter estimates. The validity and accuracy of the method are experimentally assessed in terms of the ability of the calibrated system to separate the propagating waves under controlled conditions. The tracking performance is tested through measurements with a time-varying mean flow, including an experiment conducted under propagation conditions similar to those in a wind instrument during playing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call