Abstract

Ground surface roughness is difficult to predict through a physical model due to its complex influencing factors. BP neural networks (BPNNs), a promising method, have been widely applied in the prediction of surface roughness. This paper uses the concept of BPNN to predict ground surface roughness considering the state of the grinding wheel. However, as the number of input parameters increases, the local optimum solution of the model that arises is more serious. Therefore, “identify factors” are designed to judge the iterative state of the model, whilst “memory factors” are designed to store the best weights during network training. The iterative termination conditions of the model are improved, and the learning rate and update rules of the weights are adjusted to avoid the local optimal solution. The results show that the prediction accuracy of the presented model is higher and more stable than the traditional model. Under three types of iteration steps, the average prediction accuracy is improved from 0.071, 0.065, 0.066 to 0.049, 0.042, 0.039 and the standard deviation of prediction decreased from 0.0017, 0.0166, 0.0175 to 0.0017, 0.0070, 0.0076, respectively. Therefore, the proposed method provides guidance for improving the global optimization ability of BPNNs and developing more accurate models for predicting surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.