Abstract

This paper proposes an adaptive boundary control to an axially moving string system, which couples with a mass-damper-spring (MDS) controller at its right-hand-side (RHS) boundary. Unknown parameters appearing in the system equation are assumed constant and estimated on-line by using adaptation laws. The adaptive computed-torque control algorithm applied to robot manipulators of lumped systems is extended to design the adaptive boundary controller for the coupling system. It is found that the control force and update laws depend only on the displacement, velocity and slope of the string at the RHS boundary. Lyapunov stability guarantees the convergence of the tracking error to zero. Finally, the performance of the proposed controller is demonstrated by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.