Abstract
In this study, an adaptive boundary control is presented for vibration suppression of an axially moving belt system. First, the infinite-dimensional model of the belt system including the dynamics of high acceleration/deceleration and distributed disturbance is derived by utilising the extended Hamilton's principle. Subsequently, by using Lyapunov's synthesis method and an adaptive technique, an adaptive boundary control is developed to suppress the belt's vibration and compensate for the system parametric uncertainties. With the proposed control, the stability of the closed-loop system and the uniform boundedness of all closed-loop signals are both ensured. Besides, the S-curve acceleration/deceleration method is adopted to plan the belt's axial speed and the disturbance observer is used to mitigate the effects of unknown boundary disturbance. Finally, the control performance of the closed-loop system is successfully demonstrated through simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.