Abstract

In this paper, boundary control of a marine installation system is developed to position the subsea payload to the desired set-point and suppress the cable’s vibration. Using Hamilton’s principle, the flexible cable coupled with vessel and payload dynamics is described as a distributed parameter system with one partial differential equation (PDE) and two ordinary differential equations (ODEs). Adaptive boundary control is proposed at the top and bottom boundaries of the cable, based on Lyapunov’s direct method. Considering the system parametric uncertainty, the boundary control schemes developed achieve uniform boundedness of the steady state error between the boundary payload and the desired position. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters. Simulations are provided to illustrate the applicability and effectiveness of the proposed control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.