Abstract

Traditional forward view synthesis prediction enables the efficient use of depth to provide synthesized frames for texture reference in non-base layers. But asserted drawbacks of high complexity that results from edge detection, hole-filling, up sampling and down sampling in forward warping technique compromise the positive performance. Hence, backward view synthesis prediction is proposed to remove these drawbacks while maintaining the performance. However, fixed depth block used in backward view synthesis prediction limits the performance gain and the number of motion compensation operations, which is a requisite concern of complexity analysis. In this paper, a block based BVSP for inter-layer prediction with only high-level syntax changes is implemented and an adaptive depth block size selection method is proposed. The experimental results show that an average gain of 3.5% bitrate reduction was achieved and after enabling adaptive depth block size selection, this performance gain is relatively maintained while the number of motion compensation operations was reduced to a designated level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.