Abstract

Although a dynamic or semi-dynamic datum has been adopted in some countries, it remains a challenge if a long-term stable datum is to be established in a tectonic active area. This study presents an approach to realistically reflect the time dependent behaviors of ground reference points while maintaining the long-term stability of a datum. An adaptive approach coupled with the Euler motion model is proposed for dividing an area into blocks. A least-squares collocation is then applied for modeling the residual velocities in each block. A case study using the data from 375 continuously operated GNSS stations in Taiwan is presented. It is illustrated that the complex surface kinematics in this region can be divided into three blocks. Significant reductions up to 64% of residual velocities were obtained. This shows that a stable datum can be established in a region with active and complicated surface kinematics by implementing the proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call