Abstract

Compared to unsupervised domain adaptation, semi-supervised domain adaptation (SSDA) aims to significantly improve the classification performance and generalization capability of the model by leveraging the presence of a small amount of labeled data from the target domain. Several SSDA approaches have been developed to enable semantic-aligned feature confusion between labeled (or pseudo-labeled) samples across domains; nevertheless, owing to the scarcity of semantic label information of the target domain, they were arduous to fully realize their potential. In this study, we propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment, which enables cross-domain semantic alignment by mandating semantic transfer from labeled data of both the source and target domains to unlabeled target samples. In particular, a heterogeneous graph is initially constructed to reflect the pairwise relationships between labeled samples from both domains and unlabeled ones of the target domain. Then, to degrade the noisy connectivity in the graph, connectivity refinement is conducted by introducing two strategies, namely Confidence Uncertainty based Node Removal and Prediction Dissimilarity based Edge Pruning. Once the graph has been refined, Adaptive Betweenness Clustering is introduced to facilitate semantic transfer by using across-domain betweenness clustering and within-domain betweenness clustering, thereby propagating semantic label information from labeled samples across domains to unlabeled target data. Extensive experiments on three standard benchmark datasets, namely DomainNet, Office-Home, and Office-31, indicated that our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.