Abstract

In this study, the 3D motion behaviors and the underlying adaptation mechanism of planktonic Pseudomonas aeruginosa (PAO1) in response to the deposited dead siblings nearby were explored. Utilizing a real-time 3D tracking technique, digital holographic microscopy (DHM), we demonstrate that planktonic cells near the surface covered with dead siblings have a lower density and a reduced 3D velocity compared with those upon viable ones. As a sign of chemosensory responses, bacteria swimming near the dead siblings exhibit increase in frequency of the ‘flick’ motion. Transcriptomic analysis by RNA–seq reveals an upregulated expression of dgcM and dgcE inhibited the movement of PAO1, accompanied by increased transcriptional levels of the virulence factor-related genes hcp1, clpV1, and vgrG1. Moreover, the decrease in l-glutamate and the increase in succinic acid in the metabolites of the dead bacteria layer promote the dispersion of planktonic bacteria. As a result, the dead siblings on a surface inhibit the bacterial accumulation and activate the adaptive defensive responses of planktonic PAO1 in the vicinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.