Abstract

ABSTRACTThis article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelihood-based penalized spline models of modified Cholesky components, which provide flexible nonparametric estimates that preserve positive definite structures of spectral matrices. The approach is formulated in a Bayesian framework, in which the number and location of partitions are random, and relies on reversible jump Markov chain and Hamiltonian Monte Carlo methods that can adapt to the unknown number of segments and parameters. By averaging over the distribution of partitions, the approach can approximate both abrupt and slowly varying changes in spectral matrices. Empirical performance is evaluated in simulation studies and illustrated through analyses of electroencephalography during sleep and of the El Niño-Southern Oscillation. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.