Abstract

We study a Bayesian approach to the inference of an event time distribution in the current status model where observation times are supported on a grid of potentially unknown sparsity and multiple subjects share the same observation time. The model leads to a very simple likelihood, but statistical inferences are non-trivial due to the unknown sparsity of the grid. In particular, for an inference based on the maximum likelihood estimator, one needs to estimate the density of the event time distribution which is challenging because the event time is not directly observed. We consider Bayes procedures with a Dirichlet prior on the event time distribution. With this prior, the Bayes estimator and credible sets can be easily computed via a Gibbs sampler algorithm. Our main contribution is to provide thorough investigation of frequentist’s properties of the posterior distribution. Specifically, it is shown that the posterior convergence rate is adaptive to the unknown sparsity of the grid. If the grid is sufficiently sparse, we further prove the Bernstein–von Mises theorem which guarantees frequentist’s validity of Bayesian credible sets. A numerical study is also conducted for illustration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.