Abstract

This paper presents an adaptive backstepping control scheme applied to a group of mobile manipulator robots transporting a rigid object in coordination. All the dynamic parameters of the robotic system, including the handled object and the mobile manipulators, are assumed to be unknown but constant. The problem of uncertain parameters is resolved by using the virtual decomposition approach (VDC). This approach was originally applied to multiple manipulator robot systems. In this paper, the VDC approach is combined with backstepping control to ensure a good position tracking. The controller developed in this work ensures that the position error in the workspace converges to zero, and that the internal force error is bounded. The global stability of the entire system is proven based on the appropriate choice of Lyapunov function using virtual stability of each subsystem, based on the principle of the virtual work. An experimental validation is carried out for two mobile manipulators moving a rigid object in order to show the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call