Abstract

The adaptive backstepping control method of permanent magnet motor has the problems of complicated coordinate transformation process and high position tracking error. Based on this, an adaptive backstepping control method of permanent magnet synchronous motor based on RBF is proposed. According to the principle of electrical machinery, the electromagnetic wave and magnetic field data are obtained, and the mathematical model of permanent magnet synchronous motor is constructed. Under the condition of keeping the resultant magnetomotive force after coordinate transformation unchanged, the structure of motor torque neural network is established by RBF method, and the coordinate transformation process is optimized. Through the compensation control strategy, the adaptive backstepping control mode is designed to realize the adaptive backstepping control of permanent magnet synchronous motor. The simulation results show that the position tracking error of the proposed method is 4.549 mm when the running time is 7 s and 43.699 mm when the running time is 14 s, which proves that the adaptive backstepping control effect of the proposed method is better.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call