Abstract

A feedback-dominance based adaptive back-stepping (FDBAB) controller is designed to drive a container ship to follow a predefined path. In reality, current, wave and wind act on the ship and produce unwanted disturbances to the ship control system. The FDBAB controller has to compensate for such disturbances and steer the ship to track the predefined (or desired) path. The difference between the actual and the desired path along which the ship is to sail is defined as the tracking error. The FDBAB controller is built on the tracking error model which is developed based on Serret-Frenet frame transformation (SFFT). In additional to being affected by external disturbances, the ship has more outputs than inputs (under-actuated), and is inherently nonlinear. The back-stepping controller in FDBAB is used to compensate the nonlinearity. The adaptive algorithms in FDBAB is employed to approximate disturbances. Lyapunov's direct method is used to prove the stability of the control system. The FDBAB controlled system is implemented in Matlab/Simulink. The simulation results verify the effectiveness of the controller in terms of successful path tracking and disturbance rejection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.