Abstract
Rice is a globally important crop that will continue to play an essential role in feeding our world as we grapple with climate change and population growth. Lodging is a primary threat to rice production, decreasing rice yield, and quality. Lodging assessment is a tedious task and requires heavy labor and a long duration due to the vast land areas involved. Newly developed autonomous crop scouting techniques have shown promise in mapping crop fields without any human interaction. By combining autonomous scouting and lodged rice detection with edge computing, it is possible to estimate rice lodging faster and at a much lower cost than previous methods. This study presents an adaptive crop scouting mechanism for Autonomous Unmanned Aerial Vehicles (UAV). We simulate UAV crop scouting of rice fields at multiple levels using deep neural networks and real UAV energy profiles, focusing on areas with high lodging. Using the proposed method, we can scout rice fields 36% faster than conventional scouting methods at 99.25% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.