Abstract
This paper proposed a coupling effect-triggered control approach for hypersonic reentry vehicles attitude tracking system based on the adaptive sliding mode techniques. A coupling effect indicator (CEI), which is established based on the Lyapunov stability theory, is obtained to demonstrate whether a coupling harms or benefits the system. In consequence, the coupling effect-triggered control driven by the CEI is developed to cancel the harmful couplings while keeping the beneficial couplings. Meanwhile, the robustness of the proposed method is enhanced by the adaptive sliding mode approach even when the boundary of the disturbance is unknown. To avoid the non-differentiable terms in the controller design, the command filtered scheme is introduced and the bounded stability of the closed-loop system is guaranteed. This technique outperforms the existing controllers which do not consider the coupling effect in the transient response. Finally, application to the hypersonic vehicle system is presented to demonstrate the validity of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.