Abstract

Many mechanical parts of multi-rotor unmanned aerial vehicle (MUAV) can easily produce non-smooth phenomenon and the external disturbance that affects the stability of MUAV. For multi-MUAV attitude systems that experience output dead-zone, external disturbance and actuator fault, a leader-following consensus anti-disturbance and fault-tolerant control (FTC) scheme is proposed in this paper. In the design process, the effect of unknown nonlinearity in multi-MUAV systems is addressed using neural networks (NNs). In order to balance out the effects of external disturbance and actuator fault, a disturbance observer is designed to compensate for the aforementioned negative impacts. The Nussbaum function is used to address the problem of output dead-zone. The designed fault-tolerant controller guarantees that the output signals of all followers and leader are synchronized by the backstepping technique. Finally, the effectiveness of the control scheme is verified by simulation experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call