Abstract

Approximate Bayesian computation (ABC) is a family of computational techniques in Bayesian statistics. These techniques allow to fi t a model to data without relying on the computation of the model likelihood. They instead require to simulate a large number of times the model to be fi tted. A number of re finements to the original rejection-based ABC scheme have been proposed, including the sequential improvement of posterior distributions. This technique allows to de- crease the number of model simulations required, but it still presents several shortcomings which are particu- larly problematic for costly to simulate complex models. We here provide a new algorithm to perform adaptive approximate Bayesian computation, which is shown to perform better on both a toy example and a complex social model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.