Abstract
Wireless sensor networks (WSNs) are increasingly used as platforms for collecting data from unattended environments and monitoring important events in phenomena. However, sensor data is affected by anomalies that occur due to various reasons, such as, node software or hardware failures, reading errors, unusual events, and malicious attacks. Therefore, effective, efficient, and real time detection of anomalous measurement is required to guarantee the quality of data collected by these networks. In this paper, two efficient and effective anomaly detection models PCCAD and APCCAD are proposed for static and dynamic environments, respectively. Both models utilize the One-Class Principal Component Classifier (OCPCC) to measure the dissimilarity between sensor measurements in the feature space. The proposed APCCAD model incorporates an incremental learning method that is able to track the dynamic normal changes of data streams in the monitored environment. The efficiency and effectiveness of the proposed models are demonstrated using real life datasets collected by real sensor network projects. Experimental results show that the proposed models have advantages over existing models in terms of efficient utilization of sensor limited resources. The results further reveal that the proposed models achieve better detection effectiveness in terms of high detection accuracy with low false alarms especially for dynamic environmental data streams compared to some existing models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.