Abstract
AbstractFor robots to perform many complex tasks there is a need for robust and stable force control. Linear, fixed‐gain controllers can only provide adequate performance when they are tuned to specific task requirements, but if the environmental stiffness at the robot/task interface is unknown and varies significantly, performance is degraded. This paper describes the design of two nonlinear, fuzzy force controllers, developed primarily using analytical methods, which overcome the problems of conventional control. Using simulation and an experimental robot, they are shown to perform well over a wide range of stiffness and both a quantitative and qualitative assessment of their performance compared with conventional force control is presented. © 2003 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.