Abstract

The authors propose two fast adaptive algorithms, namely Newton's gradient algorithm and the modified Rayleigh-quotient adaptive algorithm. These methods work in association with adaptive eigensubspace algorithms for tracking the zeros of a nonstationary spectrum polynomial. Newton's gradient algorithm is developed under a linearly constrained minimization procedure, whereas the modified Rayleigh-quotient adaptive technique is derived from the Rayleigh-quotient calculating procedure for the eigenstructure of the companion matrix of the spectrum polynomial. For an Nth-order polynomial, the adaptive algorithm has requires computational complexity O(N). The adaptive algorithms operate independently for each zero and have better tracking and computational complexity than the direct rooting method or the zero-sensitive adaptive algorithm. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.