Abstract
We describe the development and application of a robot vision based adaptive algorithm for the quality control of the braided sleeving of high pressure hydraulic pipes. With our approach, we can successfully overcome the limitations, such as low reliability and repeatability of braided quality, which result from the visual observation of the braided pipe surface. The braids to be analyzed come in different dimensions, colors, and braiding densities with different types of errors to be detected, as presented in this paper. Therefore, our machine vision system, consisting of a mathematical algorithm for the automatic adaptation to different types of braids and dimensions of pipes, enables the accurate quality control of braided pipe sleevings and offers the potential to be used in the production of braiding lines of pipes. The principles of the measuring method and the required equipment are given in the paper, also containing the mathematical adaptive algorithm formulation. The paper describes the experiments conducted to verify the accuracy of the algorithm. The developed machine vision adaptive control system was successfully tested and is ready for the implementation in industrial applications, thus eliminating human subjectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.