Abstract
Corobotics involves humans and robots working collaboratively as a team. This requires physical human-robot interaction (pHRI) systems that can adapt to the preferences of different humans and have good robustness and stability properties. In this brief, a new inner-loop/outer-loop robot controller formulation is developed that makes pHRI robust to changes in both corobot and human user. First, an inner-loop controller with guaranteed robustness and stability causes a robot to behave like a prescribed admittance model. Second, an outer-loop controller tunes the admittance model so that the robot system assists humans with varying levels of skill to achieve task-specific objectives. This design technique cleanly separates robot-specific control from task performance objectives and allows formal inclusion in an outer design of both an ideal task model and unknown human operator dynamics. Experimental results with the controllers running on a PR2 robot demonstrate the effectiveness of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.