Abstract

The relationship between environmental sensations and acceptance in the indoor environment has yet to be fully explored or quantified. This study is the first in the literature that examines these relationships in thermal comfort, indoor air quality, aural comfort, visual comfort, and overall indoor environmental quality (IEQ). Using a regional IEQ database, the relationship between occupants’ sensation and acceptance of individual environmental aspects was investigated. The results suggest that building occupants had high tolerances towards indoor air quality and aural and visual discomforts, while cold sensations tended to elicit environmental discomfort. Furthermore, the study developed machine learning models with imbalanced data treatment to predict overall IEQ acceptance based on both sensation and acceptance of individual IEQ domains. These models accounted for the influence of environmental adaptation and tolerance on overall IEQ satisfaction determination. They accurately predicted unseen data, indicating high model generalizability and robustness. Overall, the study has practical implications for improving building performance and provides insights to better understand the relationship between environmental sensations and occupants’ acceptance, which should be considered in building design and operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.