Abstract

The critical worldwide problem of adapting urban transport planning to COVID-19 is for the first time comprehensively addressed and solved in this study. It primarily aims to help transport planners increase the resilience of transport systems. Firstly, a multi-level decision-making hierarchy structure based on four main criteria and 17 sub-criteria is introduced for relevant stakeholders to provide a practical framework for assessing existing transport plans. Then, a three-stage integrated Fermatean fuzzy model for adapting urban transport planning to the pandemic is presented. The model hybridizes the method based on the removal effects of criteria (MEREC) and combined compromise solution (CoCoSo) method into a unique methodological framework under the Fermatean fuzzy environment. A case study provides decision-making guidelines on how to adapt transport plans to COVID-19 in the real-world context of Belgrade, Serbia. The research findings show that the pandemic significantly changed the priorities of transport planning strategies and measures. “Non-motorized travel” is now the best alternative since its numerous short-term measures lead to better transport service. The major advantages of the introduced model are higher flexibility and a more precise fusion of experts’ preference information. The integrated Fermatean fuzzy model could be used for adapting other emerging problems to COVID-19.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call