Abstract
A recommender system utilizes information filtering techniques to help users obtain accurate information effectively and efficiently. The existing recommender systems, however, recommend items based on the overall ratings or the click-through rate, and emotions expressed by users are neglected. Conversely, the cold-start problem and low model scalability are the two main problems with recommender systems. The cold-start problem is encountered when the system lacks initial rating. Low model scalability indicates that a model is incapable of coping with high-dimensional data. These two problems may mislead the recommender system, and thus, users will not be satisfied with the recommended items. A hybrid recommender system is proposed to mitigate the negative effects caused by these problems. Additionally, ontologies are applied to integrate the extracted features into topics to reduce dimensionality. Topics mentioned in the items are displayed in the form of a topic map, and users can refer to these similar items for further information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.