Abstract

We aim to design universal algorithms for online convex optimization, which can handle multiple common types of loss functions simultaneously. The previous state-of-the-art universal method has achieved the minimax optimality for general convex, exponentially concave and strongly convex loss functions. However, it remains an open problem whether smoothness can be exploited to further improve the theoretical guarantees. In this paper, we provide an affirmative answer by developing a novel algorithm, namely UFO, which achieves O(√L*), O(d log L*) and O(log L*) regret bounds for the three types of loss functions respectively under the assumption of smoothness, where L* is the cumulative loss of the best comparator in hindsight, and d is dimensionality. Thus, our regret bounds are much tighter when the comparator has a small loss, and ensure the minimax optimality in the worst case. In addition, it is worth pointing out that UFO is the first to achieve the O(log L*) regret bound for strongly convex and smooth functions, which is tighter than the existing small-loss bound by an O(d) factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.