Abstract

One of the core challenges of long-term autonomy is the environmental dynamics that agents must interact with. Some of these dynamics are driven by reliable cyclic processes, and thus are predictable. The most dominant of these is the daily solar cycle, which drives both natural phenomena like weather, as well as the activity of animals and humans. Circadian clocks are a widespread solution in nature to help organisms adapt to these dynamics, and demonstrate that many organisms benefit from maintaining simple models of their environments and how they change. Drawing inspiration from circadian systems, this work models relevant environmental states as times series, allowing for forecasts of the state to be generated without any knowledge of the underlying physics. These forecasts are treated as special percepts in a behavior-based architecture; providing estimates of the future state rather than measurements of the current state. They are incorporated into an ethologically based action-selection mechanism, where they influence the activation levels of behaviors. The approach was validated on a simulated agricultural task: a solar-powered agent monitoring pest populations. By using the artificial circadian system to leverage the forecasted state, the agent was able to improve performance and energy management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.