Abstract

The Quesant Nomad atomic force microscope (AFM) was modified to produce a reliable patch-clamp AFM for demanding biologic applications. The AFM's laser optics forms the basis of a condenser that allows simultaneous Köhler illumination and AFM imaging on an inverted optical microscope. The original AFM scan head was replaced with plastic and glass to make it biologically inert. A bevel cut in the new scan head permits clearance for patch clamp pipets. Cantilevers are attached to the scan head with a quick setting silicone rubber that is readily removable. Software was developed to (a) automate a gentle approach and set a specific feedback force, (b) provide a mouse-driven control of the X-Y position of the probe tip and recall of saved locations, and (c) measure force-distance curves over user defined paths. Additional modifications were made to minimize mechanical noise. The patch-clamp AFM achieves 600 fA (3 kHz bandwidth) and 1 A RMS noise levels (10 kHz bandwidth). The correlation of electrical and mechanical information allows signal averaging and measures sub-Angstrom, sub-millisecond electromotile responses from cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.